Chapter 5- Systems of Linear Inequalities

5.5 Optimization Problems II: Exploring Solutions

GOAL: Explore the feasible region of a system of linear inequalities.

Remember from Optimization Part 1

o An optimization problem is a problem in which we find the \qquad $1 n$ or \qquad value of functions.
o The system of functions consists of linear inequalities creating an overlapping area of

feasability

Our steps for Optimization look like this:

1) Identify what to \qquad
2) Define the Variables and restrictions.
3) Write a system of inequalities to describe the constraints (possible values) and graph them. 4) Write an Objective function for the optimization (equation to determine the min/max).
Realize that there are always multiple \qquad solutions within the feasibility region. Our goal is to identify the \qquad solution (min $/ \mathrm{max}$) which is always found at points of intersections.

More Practice!

A company does custom paint jobs on cars and trucks. Due to the size of the workshop, the company can paint a maximum of 8 cars and a maximum of 5 trucks in one day. The total output for the shop cannot exceed 10 vehicles (total) in one day due to time. The company earns $\$ 400$ for a truck paint job and $\$ 250$ for a car paint job. How many of each should they book to earn the greatest profit in one day?

What are the variables? Represent them with a letter.
x - Cars
y - Trucks

Write inequalities using these variables and info from the question.

1) $x \leq 8$

2) $y \leq 5$
3) $x+y \leq 10$

Graph and determine the Objective Equation to solve for the \max / min.

What are we trying to optimize? Maximize profit (P)

$$
P=\$ 250 x+\$ 400 y
$$

*Where do our optimized solutions appear in the feasible region (overlapped shading) on our graph? At the intersections

Therefore, our possible optimized solutions are:

1) $(\theta, 5)$
2) $(5,5): \quad \mathrm{P}=\$ 250(5)+\$ 400(5)=\$ 3250$
3) $(8,2): \quad \mathrm{P}=\$ 250(8)+\$ 400(2)=\$ 2800$
4) $(8,0)$

* This means that the solution in the feasible range which gives the Maximum profit would be to paint 5 cars and 5 trucks making them $\$ 3250$

A BC farmer wants to plant a combination of apple and pear trees that will maximize revenue.
\boldsymbol{X} She wants to plant no more than 500 trees altogether.
\boldsymbol{X} She wants to plant at least four times as many apple as pear trees

* The yield per $\xrightarrow[\text { ppletree is } 4]{ }$ bushels $3 \$ 8.50$ per bushel; 5 , and the yield per pear tree is 3
bushels (9.50 per bushel).
a -apples

$$
\begin{array}{rl}
4 & 3 \times 9.50 \\
& =28.50
\end{array}
$$

(1) $a+p \leq 500$
P - pears
(2) $a \geqslant 4 p$

$$
\begin{aligned}
& \text { (1) } a+p=500 \\
& \begin{array}{c|c}
\begin{array}{c}
\text { a int }(p=0) \\
a+(0)=500 \\
a=500
\end{array} & \begin{array}{c}
\text { pint }(a=0) \\
\\
\hline
\end{array} \\
\hline
\end{array} \\
& a=4 p \\
& y=\frac{4}{1} x+0 \\
& P=34 a+28.50 p
\end{aligned}
$$

(1)

$$
\begin{aligned}
& (0,500) \\
& R=34(500)+28.50(0) \\
& R=17,000 \quad \text { plant } \\
& \text { applet }
\end{aligned}
$$

Plant 500 apple trees and O peartrees
(2) $R={ }^{61} 34(400)+28.50(100)$ $)^{0}$ peortrimize
(100,400) $\quad R=\$ 13,600+{ }^{\$} 2850$ revenue.

$$
R=\$ 16,450
$$

Assignment: 1) p 249: \#6, 7

